ALMOST PERIODIC MEASURES ON THE TORUS

BY

J. P. CONZE AND S. GLASNER

To the memory of Shlomo Horowitz

ABSTRACT

Given a skew product flow (T, T^2) on the two torus, we construct a family of flows on $T³$ parametrized by elements of the circle T. We show that under a certain condition on (T, T^2) almost every flow in this family is strictly ergodic. This is used to characterize minimal subsets of the flow $(T, \mathcal{P}(T^2))$ induced by T on the space of probability measures on T^2 . Using a result of M. Herman, we give an example to show that this characterization does not hold for every T.

§1. Introduction and statement of the results

(a) *Strict ergodicity*

Let $T = R/Z$ be the one dimensional torus, and m the Lebesgue measure on T . It will be sometimes convenient to identify an element of R with its image in T.

Given a continuous function $h : T \rightarrow T$, and an irrational α , we consider the flow on the two dimensional torus T^2 defined by the action of the homeomorphism

$$
T = T_{\alpha,h} : (x, y) \rightarrow (x + \alpha, y + h(x)).
$$

For every $n \in \mathbb{Z}$, the function $f_n, f_n(x, y) = e^{2\pi i nx}$, and the constant multiples of f_n , are eigenfunctions for T, with $e^{2\pi in\alpha}$ as eigenvalue. Our assumption throughout this paper is that T has no other eigenfunction in the space $L^2(m^2)$.

It is easy to see that this assumption is equivalent to the following:

For every $\lambda \in \mathbb{C}$ for every $k \in \mathbb{Z} \setminus \{0\}$, the functional equation (*) $f(x + \alpha)e^{2\pi i k n(x)} = \lambda f(x)$ has no non-zero measurable solution f.

Received May 9, 1978

It is known ([2]) that (*) implies that the Lebesgue measure $m²$ is the unique T-invariant probability measure on T^2 , and since this measure assigns positive mass to non-empty open sets, T is strictly ergodic and minimal (i.e., having a unique invariant probability measure on the space, and such that every point has a dense orbit).

We shall show that whenever h is essential and satisfies a Lipschitz condition, then (*) is satisfied for every irrational α (lemma 2.4; see also [2, lemma 2.2]).

We define now two other flows. For each $\beta \in \mathbb{T}$, h and α being given as above, let $R_{\beta}: \mathbf{T}^3 \to \mathbf{T}^3$ and $S_{\beta}: \mathbf{T}^2 \to \mathbf{T}^2$ be defined by

$$
R_{\beta}(x, y, z) = (x + \alpha, y + h(x), z + h(x + \beta)),
$$

\n
$$
S_{\beta}(x, y) = (x + \alpha, y + h(x + \beta) - h(x)).
$$

There exists a flow homomorphism from (R_{β}, T^3) to (S_{β}, T^2) given by the map $F: \mathbf{T}^3 \to \mathbf{T}^2$, $F(x, y, z) = (x, z - y)$.

The first result is the following.

THEOREM A. *If* α and h satisfy (*), the flow (R_{β}, T^3) , and hence also (S_{β}, T^2) , *are strictly ergodic for m-almost all* $\beta \in$ **T**.

Given α and h, let $\Gamma = \Gamma(\alpha, h)$ be the subset of those $\beta \in T$ for which (R_{β}, T^3) is strictly ergodic, and let $\Delta = T\Gamma$. From Theorem A, we have $m(\Delta) = 0$, when (*) is satisfied.

For $h(x) = x$, we have easily $\Delta = \mathbf{Q}\alpha + \mathbf{Q}$ ($\mathbf{Q} =$ rational numbers). This can be partially extended:

THEOREM B. Let $h : \mathbf{T} \to \mathbf{T}$ be an essential map. If h is $C^{1+\epsilon}$, $\epsilon > 0$, we have *for almost all* α : $\Delta(\alpha, h) = \mathbf{Q}\alpha + \mathbf{Q}$.

It is known that strict ergodicity implies well distribution properties for sequences generated by the flow.

If we define

$$
\int h(x)+h(x+\alpha)+\cdots+h(x+(n-1)\alpha), \qquad n>0
$$

$$
h_n(x) = \begin{cases} 0, & n = 0 \end{cases}
$$

$$
\left(-h(n-\alpha)-h(x-2\alpha)-\cdots-h(x-n\alpha),\quad n<0\right.
$$

and $H_n(x) = h_n(x) - h_n(0)$, $n \in \mathbb{Z}$, we have:

 $T^{n}(x, y) = (x + n\alpha, y + h_{n}(x)),$ and $S_{\beta}^{n}(0, 0) = (n\alpha, H_{n}(\beta)).$

Thus, Theorem A implies as a

COROLLARY. If $(*)$ is satisfied, for m-almost all β , the sequence $\{H_n(\beta), n \in$ Z} *is well distributed.*

From Theorem B, it follows:

If h is a $C^{1+\epsilon}$ essential map, for m-almost all α , the sequence $\{H_n(\beta), n \in \mathbb{Z}\}$ is *well distributed, when* $\beta \not\in Q\alpha + Q$.

(b) *Almost periodicity of measures*

We are also interested here in some simple topological properties of the flow $(T, \mathcal{P}(T^2))$ induced by T on the space $\mathcal{P}(T^2)$ of probability measures on T^2 equipped with the weak $*$ topology. (We still denote by T the homeomorphism induced on $\mathcal{P}(T^2)$ by $T = T_{\alpha, h}$.)

A measure $\mu \in \mathcal{P}(T^2)$ is called *almost periodic* (a.p.) (for $(T, \mathcal{P}(T^2))$, if its T-orbit has a closure in $\mathcal{P}(T^2)$, denoted by $\overline{O(\mu)}$, which is a minimal set (i.e. the orbit of every $\mu_1 \in \overline{O(\mu)}$ is dense in $\overline{O(\mu)}$).

For any measure $\nu \in \mathcal{P}(T)$, we have easily that the orbit closure of ν under the action of the rotation $x \to x + \alpha$ on $\mathcal{P}(T)$ is a minimal set. This implies that, for every $\nu \in \mathcal{P}(T)$, the product measure $\nu \times m$ is an a.p. point of the flow $(T, \mathcal{P}(T^2))$.

Let $\pi : T^2 \to T$ be the projection $\pi(x, y) = x$, and also $\pi : \mathcal{P}(T^2) \to \mathcal{P}(T)$ the induced map on the space of probability measures. For $\mu \in \mathcal{P}(T^2)$ with $\pi(\mu) = \nu$, we write $\nu = \nu_c + \nu_d$, where $\nu_d = \sum a_i \delta_{x_i}$ is the purely discontinuous part of v and v_c is its continuous part (i.e. v_c has no atoms). Let μ_i be the restriction of μ to $\pi^{-1}(x_i)$ and write $\mu = \mu' + \mu''$ where $\mu'' = \sum \mu_i$. For an arbitrary irrational α and the function $h(x) = x$, the following characterization of a.p. measure of $(T, \mathcal{P}(T^2))$ was given in [3].

A measure $\mu \in \mathcal{P}(T^2)$ is a.p. iff $\mu' = \nu_c \times m$. Each orbit closure in $\mathcal{P}(T^2)$ contains a unique minimal set. We prove here the following theorems.

THEOREM C. Let α and h satisfy (*). Let $\mu \in \mathcal{P}(T^2)$ with $\nu = \pi(\mu)$ an *absolutely continuous measure (with respect to m). Then* $\nu \times m \in \overline{O}(\mu)$ *. If in addition* μ *is a.p. then* $\mu = \nu \times m$ *.*

THEOREM D. Suppose that $\Delta(\alpha, h)$ is countable. Then a measure $\mu \in \mathcal{P}(\mathbf{T}^2)$ is *a.p. iff* $\mu' = \nu_c \times m$. Each orbit closure in $\mathcal{P}(T^2)$ contains a unique minimal set.

Is $\Delta(\alpha, h)$ always countable? The answer is no; we produce an irrational α and a continuous function h for which the assumption (*) holds and yet $\Delta(\alpha, h)$ (which is of measure zero) is uncountable. We also show that for the corresponding flow (T, T^2) , there exists an a.p. $\mu \in \mathcal{P}(T^2)$ for which $\pi(\mu) = \nu$ is continuous and yet $\mu \neq \nu \times m$.

Analogous results about the topological behaviour of $\{H_n(x)\}\$ and the character of almost periodic closed subsets of (T, T^2) were obtained in [3].

§2. The set $\Delta(\alpha, h)$. Proofs of Theorems A and B

2.1. The following proposition will be used in Theorems A, C, D. It is classical and we omit the proof.

Consider the product flow $(T \times T, T^2 \times T^2)$ given by

$$
(T \times T)((x, y), (z, w)) = ((x + \alpha, y + h(x)), (z + \alpha, w + h(z))).
$$

Let $\mathcal I$ denote the subspace of $L_2(m^4)$ of $T \times T$ -invariant functions.

PROPOSITION. If α and h satisfy (*), \Im is spanned by the functions of the form $(x, y, z, w) \rightarrow e^{2\pi i k(x-z)}, k \in \mathbb{Z}.$

2.2. PROOF OF THEOREM A. Since (R_β, T^3) is a group extension of the strictly ergodic flow (T, T^2) , it is enough to show that (R_β, T^3, m^3) is ergodic [2, lemma 2.1].

Let $(l, p, k) \in \mathbb{Z}^3$. Let f be defined on \mathbb{T}^4 by

$$
f(x, y, z, w) = e^{2\pi i (lx + py + kw)}.
$$

By the ergodic theorem, we have

$$
\frac{1}{N}\sum_{n=0}^{N-1}(T\times T)^{n}f\rightarrow E(f|\mathcal{I}) \qquad m^{4}\text{-a.e.}
$$

Here $E(\cdot|\mathcal{I})$ is the projection of $L_2(m^4)$ onto \mathcal{I} . Now if $(l, p, k) \neq (0, 0, 0)$ then by Proposition 2.1 f is orthogonal to $\mathcal I$ and $E(f|\mathcal I)=0$. Thus

$$
\lim \frac{1}{N} \sum_{n=0}^{N-1} \exp \{2\pi i \left[l(x + n\alpha) + p(y + h_n(x) + k(w + h_n(z)) \right] \} = 0
$$

for $m⁴$ almost all x, y, w and z. Writing $\beta = z - x$ we conclude that for almost all β and $g(x, y, w) = g(x, y, x + \beta, w)$

$$
\lim \frac{1}{N} \sum_{n=0}^{N-1} R_{\beta}^{n} g(x, y, w) = 0 = \int g dm^{3} \qquad m^{3} \text{-a.e.}
$$

Since the functions $g(x, y, w)$ which correspond to $(l, p, k) \neq 0$ together with the constant functions span $L_2(m^3)$, we conclude that (R_β, T^3) is ergodic. The strict ergodicity of (S_{β}, T^2) follows since the latter is a factor of the former flow.

2.3. REMARKS. (a) Suppose that α and h do not satisfy (*). Then, for some $k \in \mathbb{Z} - \{0\}$ and $\lambda \in \mathbb{C}$, $|\lambda| = 1$, there exists a non-zero measurable function f such that

$$
f(x+\alpha)e^{2\pi i k h(x)} = \lambda f(x).
$$

Define $g_a(x) = f(x)/f(x + \beta)$. We have

$$
g_{\beta}(x)=e^{2\pi i k\{h(x)-h(x+\beta)\}}g_{\beta}(x+\alpha),
$$

for every $\beta \in \mathbb{T}$. Therefore $(S_{\beta}, \mathbb{T}^2)$, and hence also $(R_{\beta}, \mathbb{T}^3)$, are not strictly ergodic (cf. [2, lemma 2.1]), and we have $\Delta(\alpha, h) = T$.

This shows that we have (*) iff $m(\Delta) = 0$, and that Δ is either all of **T** or a set of measure zero.

These results can be proved directly, using the fact that Δ is a measurable subgroup of T.

(b) The results in [3] were obtained under the assumption that the flow (T, T^2) is not equicontinuous rather than the *a priori* stronger condition that the only continuous eigenfunctions of (T, T^2) are the functions $e^{2\pi i kx}$ ($k \in \mathbb{Z}$), which is the topological analogue for our condition (*). However, lemma 2.2 of [3] shows that the weaker condition implies the stronger one.

2.4. Given a continuous function $h : T \rightarrow T$, there exists a continuous "lift" h : $[0, 1] \rightarrow \mathbf{R}$ (i.e. $h(t) = h(t)$ (mod 1)). The integer $d = h(1) - h(0)$ depends only on h and is called the *index* of h. Clearly h is essential (i.e. non-homotopic to a constant) iff $d \neq 0$. Let $\tilde{g} : [0,1] \rightarrow \mathbb{R}$ be defined by $\tilde{g}(x) = \tilde{h}(x) - dx$. Then $\tilde{g}(1)-\tilde{g}(0) = 0$ and $\tilde{g}: \mathbf{T} \to \mathbf{R}$ is continuous. Our next goal is to prove Theorem B. The proof of the following lemma is essentially that of lemma 2.2 of [2].

LEMMA. Let $h : T \rightarrow T$ be an essential map of index $d \neq 0$, and suppose that for

all $x, x' \in T$, $|h(x) - h(x')| < M|x - x'|$. Then condition (*) is satisfied for every *irrational* $\alpha \in \mathbf{T}$.

2.5. The next lemma is due to M. Herman.

LEMMA. Let $\varphi : \mathbf{T} \to \mathbf{R}$ be of class $C^{1+\varepsilon}$. Let $\beta = \int_{\mathbf{T}} \varphi(x) dx$. Then for almost all $\alpha \in \mathbf{T}$ the functional equation $f(x + \alpha) = e^{2\pi i \varphi(x)} f(x)$ has a non-zero measurable *solution f iff* $\beta \in \mathbb{Z} \alpha + \mathbb{Z}$.

PROOF. Consider $\psi(x) = \varphi(x) - \beta$. Using Fourier series, a formal solution u of the (additive) functional equation

$$
u(x+\alpha)=\psi(x)+u(x)
$$

can be defined. For every ε' , $0 \le \varepsilon' \le \varepsilon$, for almost all α , the solution u can be shown to be ε '-differentiable.

Taking the exponential, we get

$$
e^{2\pi i u(x+\alpha)} = e^{-2\pi i\beta}e^{2\pi i\varphi(x)}e^{2\pi i u(x)}.
$$

Therefore, the given functional equation has a solution iff $e^{-2\pi i\beta}$ is an eigenvalue of the rotation by α , i.e. $\beta \in \mathbb{Z} \alpha + \mathbb{Z}$.

2.6. PROOF OF THEOREM B. Using Fourier coefficients, it can be shown that $\beta \in \Delta(h, \alpha)$ iff, for some $(k, l) \in \mathbb{Z}^2$ - { $(0, 0)$ }, there exists a non-zero measurable solution f of the equation

$$
f(x+\alpha)e^{2\pi i[kh(x+\beta)+lh(x)]}=f(x).
$$

For $k \neq -l$, the function $x \rightarrow kh(x + \beta) + lh(x)$ is an essential function, which satisfies a Lipschitz condition. By Lemma 2.4, there exists no non-zero measurable solution of the above equation. Thus $k = -l$, and we have, with the notation used in 2.4,

$$
f(x+\alpha)e^{2\pi i\varphi(x)}=f(x),
$$

where $\varphi(x) = k[\bar{g}(x + \beta) - \bar{g}(x) + d\beta]$. Applying Lemma 2.5 to φ , for a.a. α , we get $k d\beta \in \mathbb{Z} \alpha + \mathbb{Z}$, i.e. $\beta \in \mathbb{Q} \alpha + \mathbb{Q}$.

§3. Almost periodic measures

3.1. PROPOSITION. *Suppose* α and h satisfy (*), and let $\mu \in \mathcal{P}(\mathbf{T}^2)$ be

absolutely continuous (with respect to m²). Let $\pi(\mu) = \nu$ *; then* $\nu \times m \in \tilde{O}(\mu)$ *. If in addition* μ *is a.p. then* $\mu = \nu \times m$.

PROOF. We show that for every $(k, l) \in \mathbb{Z}^2$ with $l \neq 0$

(1)
$$
\lim \frac{1}{N} \sum_{n=0}^{N-1} |\widehat{T^n} \mu(k, l)|^2 = 0,
$$

where $\hat{\cdot}$ denotes Fourier transform.

This implies that there exists a sequence n_i for which

$$
\lim \widehat{T^{n_{j}}}\mu(k, l) = 0, \qquad \forall (k, l) \in \mathbb{Z}^{2}, \quad l \neq 0.
$$

We can assume that $\lim T^{n_i} \mu = \eta$ exists and let $\lim T^{n_i} \nu = \theta$. Then $\hat{\eta}(k, l) = 0$ when $l \neq 0$ and $\hat{\eta}(k,0) = \hat{\theta}(k)$. Thus $\eta = \theta \times m$ and since $\overline{O}(\nu)$ is minimal, we have $\nu \times m \in \overline{O}(\theta \times m) \subset \overline{O}(\mu)$. Thus it suffices to show that (1) holds. Let $(k, l) \in \mathbf{T}^2$ with $l \neq 0$ be given and let $g(x, y) = e^{2\pi i (kx + ly)}$. Suppose $d\mu =$ $f(x, y)dm^2$ where $f \in L_1(m^2)$. Then

$$
\widehat{T^n\mu}(k,l) = \iint g(x + n\alpha, y + h_n(x))f(x, y)dxdy
$$

$$
= \langle T^n g, \overline{f} \rangle
$$

and

$$
|\widehat{T^n\mu}(k,l)|^2 = \langle (T \times T)^n (g \otimes \bar{g}), \bar{f} \otimes f \rangle.
$$

By the ergodic theorem

$$
\lim \frac{1}{N} \sum_{n=0}^{N-1} (T \times T)^n (g \otimes \bar{g}) = E(g \otimes \bar{g} \mid \mathscr{I}) \qquad m^4 \text{-a.e.}
$$

Since $l \neq 0, g \otimes \bar{g}$ is orthogonal to $\mathcal I$ and $E(g \otimes \bar{g} | \mathcal I) = 0$. This proves (1). The last assertion is clear. \Box

THEOREM C. Let α and h satisfy (*). Let $\mu \in \mathcal{P}(T^2)$ and assume that $\nu = \pi(\mu)$ is absolutely continuous (with respect to m). Then $\nu \times m \in \overline{O}(\mu)$. If in *addition* μ *is a.p. then* $\mu = \nu \times m$.

PROOF. Let u be a probability measure on T and let $\theta \in \mathcal{P}(T^2)$. Define $u * \theta \in \mathcal{P}(\mathbf{T}^2)$ by

$$
\int_{\mathbf{T}^2} f(x, y) d(u * \theta) = \int_{\mathbf{T}^2} \int_{\mathbf{T}} f(x, y + z) du(z) d\theta(x, y).
$$

It is easy to check that $\theta \rightarrow u * \theta$ is a homomorphism of $(T, \mathcal{P}(T^2))$ into itself. Since $\overline{O}(\mu)$ contains a minimal subset we can assume that μ itself is a.p. Let $\{u_n\}$ be a sequence of absolutely continuous measures on T which converges to δ_0 , the point mass at zero. Then for each n, $u_n * \mu$ is an a.p. and absolutely continuous measure on T^2 with $\pi(u_n * \mu) = \nu$. Hence, by Proposition 3.1, $u_n * \mu = \nu \times m$. But $\lim_{\mu} u_n * \mu = \delta_0 * \mu = \mu$ and we conclude that $\mu = \nu \times m$.

We recall the following notation which was introduced in section 1. For a measure $\mu \in \mathcal{P}(T^2)$ with $\pi(\mu) = \nu$ we let $\nu = \nu_c + \nu_d$ be the decomposition of ν into continuous and purely discontinuous parts. Suppose $v_d = \sum a_i \delta_{x_i}$ ($x_i \in T$, $a_i > 0$) and let μ_i be the restriction of μ to $\pi^{-1}(x_i)$. Write $\mu'' = \sum \mu_i$ and $\mu = \mu'' + \mu'$. One can easily show that $\mu''/\mu''(\mathbf{T}^2)$ is an a.p. element of $(T, \mathcal{P}(\mathbf{T}^2))$, $[3]$.

THEOREM D. *Suppose that* $\Delta(\alpha, h)$ *is countable. Then a measure* $\mu \in \mathcal{P}(T^2)$ *is* a.p. *iff* $\mu' = \nu_c \times m$. Each orbit closure in $(T, \mathcal{P}(T^2))$ contains a unique minimal *set.*

PROOF. Since $\mu''/\mu''(\mathbf{T}^2)$ and $\nu_c \times m/(\nu_c \times m)(\mathbf{T}^2)$ are a.p. the condition is sufficient. Moreover when proving necessity we can assume that $\mu = \mu'$. Thus our assumption is that $\pi(\mu) = \nu$ is continuous. As in the proof of Proposition 3.1 it suffices to show that for every k and $l \neq 0$,

$$
\lim \frac{1}{N} \sum_{n=0}^{N-1} |\widehat{T^n \mu}(k, l)|^2 = 0.
$$

Put $g(x, y) = e^{2\pi i (kx + ly)}$, then

$$
|\widehat{T^n\mu}(k,l)|^2 = \langle (T \times T)^n g \otimes g, \mu \times \bar{\mu} \rangle.
$$

Let $f(x, y, z) = g \otimes \overline{g}(x, y, x + \beta, w) = e^{2\pi i [l(y-w)-k\beta]}$. For $\beta \not\in \Delta$, by strict ergodicity of (R_{α}, T^3) , we have, since $l \neq 0$, for every $(x, y, z) \in T^3$:

$$
\lim \frac{1}{N} \sum_{n=0}^{N-1} R_{\beta}^n f(x, y, z) = \int_{T^3} f dm^3 = 0.
$$

Therefore, outside a set $B \subset \{(x, y, z, w) : z - x \in \Delta\}$,

$$
\lim \frac{1}{N} \sum_{n=0}^{N-1} (T \times T)^n g \otimes \bar{g}(x, y, z, w) = 0.
$$

Since Δ is assumed to be countable, and v is continuous, we have $(\mu \times \mu)(B) =$ 0. By Lebesgue's convergence theorem, we conclude

$$
\lim \frac{1}{N} \sum_{n=0}^{N-1} \int (T \times T^n) g \otimes \bar{g} d\mu \times d\mu = 0.
$$

§4. A counter example

In this section we produce an irrational α and a continuous function $h : T \rightarrow T$ such that (a) α and h satisfy (*), (b) $\Delta(\alpha, h)$ is uncountable, (c) Theorem D does not hold for (T, T^2) ; i.e. there exists an a.p. $\mu \in \mathcal{P}(T^2)$ with $\nu = \pi(\mu)$ continuous and $\mu \neq \nu \times m$.

As in [2] define a sequence of integers v_k by $v_1 = 1$ and $v_{k+1} = 2^{v_k} + v_k + 1$. Set $n_k = 2^{v_k}$ and $\alpha = \sum_{k=1}^{\infty} n_k^{-1}$. Then

$$
|n_k\alpha - [n_k\alpha]| < \frac{2 \cdot 2^{v_k}}{2^{v_{k+1}}} = 2^{-n_k}
$$

where $[\cdot]$ denotes integral part. Let $n_{-k} = -n_k$ and write

$$
h(x)=\sum_{k\neq 0} (e^{2\pi i n_k\alpha}-1)e^{2\pi i n_kx}.
$$

The sequence $\{n_k\}_{k=1}^{\infty}$ is lacunary and $h(x)$ is infinitely differentiable. For a real number t let $h' = t \cdot h$.

4.1. PROPOSITION. *There exists a t*, $0 \le t \le 1$, for which α and h' satisfy (*).

PROOF. By Remark 2.3(a) it suffices to show that there exist t and β such that for every $l \neq 0$ the equation

(1)
$$
g(x + \alpha)e^{2\pi i [h'(x + \beta) - h'(x)]} = g(x)
$$

does not admit a non-zero measurable solution g. By a result of J. P. Conze [1], if the additive equation

(2)
$$
l[h(x+\beta)-h(x)] = \psi(x+\alpha)-\psi(x)
$$

admits no measurable solution ψ then for almost every t equation (1) admits no measurable solution. It is therefore enough to show that (2) admits no measurable solution for some β .

If such a measurable solution exists, and belongs to L^2 , we have from (2) the following equation for the Fourier coefficients:

$$
l(e^{2\pi i n_k \beta}-1)\hat{h}(n_k)=(e^{2\pi i n_k \alpha}-1)\hat{\psi}(n_k)
$$

or

$$
\psi(n_k)=l(e^{2\pi i n_k\beta}-1).
$$

Now if $\beta \in \mathbf{T}$ is such that $\sum |e^{2\pi in_k \beta} - 1|^2 = \infty$ then we can conclude that (2) admits no $L^2(m)$ solution. Since $\{n_k\}$ is lacunary it follows from a result of M. Herman, [4], that (2) admits no measurable solution as well. The proof is \Box completed. \Box

4.2. PROPOSITION. For every t, $\Delta(\alpha, h')$ is uncountable.

PROOF. Let $\beta \in \mathbf{T}$ satisfy $\sum_{k \neq 0} |e^{2\pi i n_k \beta} - 1|^2 < \infty$ then (2) above admits a solution (for $l = 1$):

$$
\psi(x)=\sum_{k\neq 0}\big(e^{2\pi i n_k\beta}-1\big)e^{2\pi i n_kx}.
$$

Hence for every t, (1) admits a solution and $\beta \in \Delta(\alpha, h')$. The condition $\sum_{k\neq 0}$ $e^{2\pi i n_k \beta} - 1^2 < \infty$ is satisfied by an uncountable number of $\beta \in \mathbb{T}$ and hence $\Delta(\alpha, h^{\dagger})$ is uncountable.

4.3. PROPOSITION. *Fix a t₀*, $0 \le t_0 \le 1$ *for which* α *, h^t satisfy (*) and let* (T, T^2) *be the corresponding flow. Then there exists an a.p. measure* $\mu \in \mathcal{P}(T^2)$ with $v = \pi(\mu)$ continuous and $\mu \neq \nu \times m$.

PROOF. Let $\Omega = {\omega \in \mathbf{T} : \omega = \Sigma \varepsilon_k n_k^{-1}; \varepsilon_k = 0,1}$; then Ω is a closed subset of **T** which is homeomorphic to a Cantor set. Define a function $D: \Omega \rightarrow \mathbb{R}$ by

$$
D(\omega)=\sum_{k\neq 0} |e^{2\pi i n_k \omega}-1|.
$$

Clearly D is continuous. We notice that

$$
H_n(x) = \sum_{k \neq 0} (e^{2\pi i n_k n a} - 1)(e^{2\pi i n_k x} - 1) \qquad (x \in \mathbf{T}),
$$

and therefore for every $n \in \mathbb{Z}$

$$
|H_n(\omega)| \leq 2 \sum |e^{2\pi i n_k \omega} - 1| = 2D(\omega).
$$

Let v be an arbitrary continuous measure on Ω with $\text{Supp}(\nu) = \Omega$ and put $\eta = \nu \times \delta_0$. Let μ be an a.p. measure in $O(\eta)$ such that $\pi(\mu) = \nu$. There exists a sequence of integers $\{n_i\}$ such that $\lim T^{n_i}\eta \to \mu$ and $n_i\alpha \to 0$. Clearly

$$
\lim \left[\text{Supp}(T^{n_j}\eta)\right] \supset \text{Supp}(\mu)
$$
.

We observe that

$$
\text{Supp}(T^{n_j}\eta) = \{(\omega + \eta_j\alpha, h_{n_j}(\omega)) : \omega \in \Omega\}
$$

= $\{(\omega + n_j\alpha, H_{n_j}(\omega) + h_{n_j}(0)) : \omega \in \Omega\}.$

Now let $(x, y) \in \overline{\lim} [\text{Supp}(T^{n_i}\eta)]$, then for some sequence $\{\omega_i\} \subset \Omega$

$$
(x, y) = \lim T^{n_j}(\omega_j, 0)
$$

=
$$
\lim (\omega_j + n_j \alpha, H_{n_j}(\omega_j) + h_{n_j}(0)).
$$

Without loss of generality we can assume that $y_0 = \lim h_{n_i}(0)$ exists and then $x = \lim_{i \to i} \omega_i$ and

$$
|y-y_0|=|\lim H_{n_i}(\omega_i)|\leq \lim 2D(\omega_i)=2D(x).
$$

Thus we have

$$
Supp(\mu) \subset \{(\omega, y) : |y - y_0| \leq 2D(\omega)\}\
$$

In particular $\text{Supp}(\mu) \neq \Omega \times \text{T}$ and $\mu \neq \nu \times m$.

REFERENCES

1. J. P. Conze, *Remarques sur les trans[ormations cylindriques et les equations fonctionnelles,* Séminaire de Probabilités de Rennes, 1976.

2. H. Furstenberg, *Strict ergodicity and transformations of the toms,* Amer. J. Math. 88 (1961), 573-601.

3. S. Glasner, *Almost periodic sets and measures on the toms,* Israel J. Math. 32 (1979), 161-172.

4. M. R. Herman, exposé, Séminaire de théorie ergodique, Paris, 1976.

UNIVERSITÉ DE RENNES RENNES, FRANCE

AND

TEL AVIV UNIVERSITY TEL AVIV, ISRAEL