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ABSTRACT 

Given a skew product flow (T ,T  2) on the two torus, we construct  a family of 
flows on T 3 parametrized by e lements  of the circle T. We show that under  a 
certain condition on (T, T ~) almost every flow in this family is strictly ergodic. 
This  is used to characterize minimal subsets  of the  flow (T, ~(T2)) induced by T 
on the space of probability measures  on I"2. Using a result of M. Herman,  we 
give an example to show that this characterization does not hold for every T. 

§1. Introduction and statement of the results 

(a) Strict ergodicity 

Let T = R/Z be the one dimensional torus, and m the Lebesgue measure on T. 

It will be sometimes convenient to identify an element of R with its image in T. 

Given a continuous function h :T---~T, and an irrational a, we consider the 

flow on the two dimensional torus T 2 defined by the action of the 

homeomorph ism 

T =  T~.h : (X, y)---~ (X + ol, y +h(x)). 

For every n E Z, the function f , ,[ ,(x,y) = e 2"'~, and the constant multiples of 

[,, are eigenfunctions for T, with e 2'~I'~ as eigenvalue. Our  assumption through- 

out this paper  is that T has no other  eigenfunction in the space L2(m2). 
It is easy to see that this assumption is equivalent to the following: 

For every A ~ C for every k E Z\{0}, the functional equation 

(*) f(x + a ) e  2"kh(~) = At(x ) 

has no non-zero measurable solution f. 
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It is known ([2]) that (*) implies that the Lebesgue measure m 2 is the unique 

T-invariant probability measure on T 2, and since this measure assigns positive 

mass to non-empty open sets, T is strictly ergodic and minimal (i.e., having a 

unique invariant probability measure on the space, and such that every point has 

a dense orbit). 

We shall show that whenever h is essential and satisfies a Lipschitz condition, 

then (*) is satisfied for every irrational a (lemma 2.4; see also [2, lemma 2.2]). 

We define now two other flows. For each /3 E T, h and a being given as 

above, let Re :T3---~T 3 and S~ : T2----~T 2 be defined by 

R e ( x , y , z )  = (x + a , y  + h ( x ) , z  + h(x +/3)), 

Sz(x, y) = (x + a, y + h(x + fl) - h(x)). 

There exists a flow homomorphism from (Re, T 3) to (S~, T 2) given by the map 

F : T 3 ~ T 2, F(x, y, z) = (x, z - y ). 

The first result is the following. 

THEOREM A. If a and h satisfy (*), the flow (Re, T3), and hence also (S~, T2), 

are strictly ergodic for m -almost all/3 E T. 

Given a and h, let F = F(a, h) be the subset of those/3 ~ T for which (Re, T 3) 

is strictly ergodic, and let A = T\F. From Theorem A, we have m (A) = 0, when 

(*) is satisfied. 

For h(x) = x, we have easily A = Qa  + Q (Q = rational numbers). This can be 

partially extended: 

THEOREM B. Let h : T---~ T be an essential map. If h is C '÷~, e > O, we have 
for almost all a : A(a, h) = Qa  + Q. 

It is known that strict ergodicity implies well distribution properties for 

sequences generated by the flow. 

If we define 

h.(x) = {  

h ( x ) + h ( x + a ) + . . . + h ( x + ( n - 1 ) a ) ,  n > 0  

0, n = 0  

- h ( n - a ) - h ( x - 2 a )  . . . . .  h ( x - n a ) ,  n < 0  

and H,(x)  = h , ( x ) -  hn(0), n E Z, we have: 
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T " ( x , y ) =  (x + na, y + h . (x ) ) ,  and S~(O,O)= (na, H . ( ~ ) ) .  

Thus, Theorem A implies as a 

COROLLARY. If (*) is satisfied, for m-a lmos t  all 8, the sequence {H,(/3), n ~E 

Z} is well distributed. 

From Theorem B, it follows: 

I f  h is a C '÷~ essential map, for m-a lmos t  all a, the sequence {H,(~) ,  n E Z} is 

well distributed, when ~ ~= Q a  + Q. 

(b) Almos t  periodicity of  measures 

We are also interested here in some simple topological properties of the flow 

(T, ~(T2)) induced by T on the space ~ ( T  2) of probability measures on T 2 

equipped with the weak * topology. (We still denote by T the homeomorphism 

induced on ~ ( T  ~) by T = T~.h.) 

A measure # E ~ ( T  2) is called almost periodic (a.p.) (for (T, ~(T2)), if its 

T-orbit  has a closure in ~(T2), denoted by O(/x), which is a minimal set (i.e. the 

orbit of every p., E O(tx) is dense in O(/~)). 

For any measure v E ~(T) ,  we have easily that the orbit closure of v under 

the action of the rotation x --~ x + a on ~ (T)  is a minimal set. This implies that, 

for every v E ~(T) ,  the product measure v x m is an a.p. point of the flow 

(T, ~ (T2)). 
Let w : T 2 - * T  be the projection 7r(x, y ) =  x, and also ~r : ~(T2)--* ~ ( T )  the 

induced map on the space of probability measures. For /z E ~ ( T  2) with 

¢r(/z) = v, we write v = v, + vd, where vd = 5'. a,Sx, is the purely discontinuous 

part of v and vc is its continuous part (i.e. vo has no atoms). Let /xi be the 

restriction of ~ to 7r-l(xi) and write /z = # ' + / x "  where /z"=E/z~. For an 

arbitrary irrational a and the function h ( x ) =  x, the following characterization 

of a.p. measure of (T, ~(T2)) was given in [3]. 

A measure tz E ~ ( T  2) is a.p. iff p . '=  vex m. Each orbit closure in ~ ( T  2) 

contains a unique minimal set. We prove here the following theorems. 

THEOREM C. Let a and h satisfy (*). Let tz E ~ ( T  2) with v = rr(l~ ) an 

absolutely continuous measure (with respect to m ). Then v × m E O(i.t ). I f  in 

addition I.t is a.p. then tz = v × m. 
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THEOREM D. Suppose that A(a, h) is countable. Then a measure tz E ~ ( T  2) is 

a.p. iff tt ' = vc × m. Each orbit closure in ~ ( T  2) contains a unique minimal set. 

Is A(o~, h) always countable? The answer is no; we produce an irrational c~ and 

a continuous function h for which the assumption (*) holds and yet A(c~, h) 

(which is of measure zero) is uncountable. We also show that for the correspond- 

ing flow (T, T2), there exists an a.p.p. E ~ ( T  :) for which 7r(/z) = v is continuous 

and yet p . # v X m .  

Analogous results about the topological behaviour of {H.(x)} and the 

character of almost periodic closed subsets of (T,T 2) were obtained in [3]. 

§2. The set A(a, h). Proofs of Theorems A and B 

2.1. The following proposition will be used in Theorems A, C, D. It is 

classical and we omit the proof. 

Consider the product flow (T x T, T2x T 2) given by 

(T x T) ((x, y), (z, w)) = ((x + c¢, y + h (x)), (z + a, w + h (z))). 

Let 3¢ denote the subspace of L2(m 4) of T x T-invariant functions. 

PROPOSITION. I f  a and h satisfy (*), # is spanned by the functions of the form 

(x, y, z, w) -*  e 2"ktx-z), k E Z. 

2.2. PROOF OF THEOREM A. Since (Re, T 3) is a group extension of the strictly 
ergodic flow (T,T/), it is enough to show that (Rt3,T 3, m 3) is ergodic [2, lemma 

2.1]. 
Let ( l , p , k ) E  Z 3. Let f be defined on T 4 by 

f(x,  y, z, w) = e 2""'÷'+kw). 

By the ergodic theorem, we have 

N - I  

1 ~, ( T x  T)"f-- .~E(f[ ,~)  m'-a.e. 
N r l ~ 0  

Here E( -15  r) is the projection of Lz(m') onto #. Now if (l,p, k)  # (0,0,0) then 

by Proposition 2.1 f is orthogonal to 5 ~ and E ( f [ ~ ) =  0. Thus 

• ] /"q -- | 

llm ~- ~__~| exp{2rri[l(x + na )+  p(y + h , ( x ) +  k (w  + h.(z))]} = 0 
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for m 4 almost all x, y, w and z. Writing/3 = z - x we conclude that for almost all 

/3 and g ( x , y , w ) = g ( x , y , x  +/3, w)  

• 1 N - ~  ~- 
h m ~ _ _ o  R~g(x ,y ,  w ) =  0 = gdm 3 m'-a.e.  

Since the functions g (x, y, w) which correspond to (l, p, k) ~ 0 together with the 

constant functions span L2(m 3), we conclude that (Rz, T 3) is ergodic. The strict 

ergodicity of (St3, T 2) follows since the latter is a factor of the former flow. []  

2.3. REMARKS. (a) Suppose that a and h do not satisfy (*). Then, for some 

k E Z -  {0} and 3. E C, I A I = 1, there exists a non-zero measurable function f 

such that 

f ( x  + a ) e  2"k~<'~ = Af(x).  

Define go(x) = f ( x ) / f ( x  +/3). We have 

g~(x) = e2~'kthtx)-ht~+a)lga(x + a),  

for every /3 E T. Therefore  (S~,T2), and hence also (Ro, T3), are not strictly 

ergodic (cf. [2, lemma 2.1]), and we have A ( a , h ) =  T. 

This shows that we have (*) iff m (A) = 0, and that A is either all of T or a set of 

measure zero. 

These results can be proved directly, using the fact that A is a measurable 

subgroup of T. 

(b) The results in [3] were obtained under the assumption that the flow (T, T 2) 

is not equicontinuous rather than the a priori stronger condition that the only 

continuous eigenfunctions of (T, T 2) are the functions e 2"kx (k E Z), which is the 

topological analogue for our condition (*). However,  lemma 2.2 of [3] shows that 

the weaker condition implies the stronger one. 

2.4. Given a continuous function h : T---~ T, there exists a continuous "lift" 

/~ • [0, 1] --~ R (i.e. h( t )  = h (t) (mod 1)). The integer d =/~(1) - h(0) depends only 

on h and is called the index of h. Clearly h is essential (i.e. non-homotopic to a 

constant) iff d / 0 .  Let ~ : [0 ,1] - -+R be defined by ~ , ( x ) = f z ( x ) - d x .  Then 

~ ( 1 ) -  ~(0) -- 0 and ~ : T--* R is continuous. Our next goal is to prove Theorem 

B. The proof of the following lemma is essentially that of lemma 2.2 of [2]. 

LEMMA. Let h : T - ~  T be an essential map of index d / 0, and suppose that for 
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all x, x '  ~ T,  t h (x)  - h (x')t  < M i x  - x ' t .  Then condition (*) is satisfied for every 

irrational ct E T. 

2.5. The next lemma is due to M. Herman.  

LEMMA. Let q~ : T---> R be of  class CI+L Let/3 = f r  ~ (x )dx. Then for almost all 

a E T the functional  equation f ( x  + a )  = e2"~) . f ( x )  has a non-zero measurable 

solution f iff /3 ~ Z a  + Z. 

PROOF. Consider $ (x )  = 9 ( x ) - / 3 .  Using Fourier series, a formal solution u 

of the (additive) functional equation 

u(x + u(x) 

can be defined. For every e ' ,  0 < e '  < e, for almost all a, the solution u can be 

shown to be z '-differentiable.  

Taking the exponential,  we get 

e2~i,(x+~,) -- e-2,at3 e 2~i,P(X ) e 2~i, tx )" 

Therefore,  the given functional equation has a solution iff e -2"~ is an 

eigenvalue of the rotation by a, i.e. /3 E Z a  + Z. 

2.6. PROOF OF THEOREM B. Using Fourier coefficients, it can be shown that 

/3 E A(h, a )  iff, for some (k, l) ~ Z 2 - {(0, 0)}, there exists a non-zero measurable 

solution f of the equation 

f ( x  + a ) e  2~'t~"'x+''+"'x,~ = f ( x ) .  

For k / - / ,  the function x --> k h ( x  + /3 )+  lh (x )  is an essential function, which 

satisfies a Lipschitz condition. By Lemma  2.4, there exists no non-zero measura- 

ble solution of the above equation. Thus k = - / ,  and we have, with the notation 

used in 2.4, 

f ( x  + a ) e  2~'~`~)= f ( x ) ,  

where ~ ( x )  = k[~,(x + / 3 ) -  ~ ( x ) +  dfl]. Applying Lemma 2.5 to 9, for a.a. a, we 

get kd/3 E Z a  + Z ,  i.e. /3 E Q a  + Q. 

§3. Almost periodic measures 

3.1. PROPOSITION. Suppose a and h satisfy (*), and let i ~ E ~ ( T  2) be 
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absolutely continuous (with respect to m2). Let 7r(tz ) = v; then v × m E O(l~ ). I f  

in addition Ix is a.p. then ~ = v × m. 

PROOF. We show that for every (k, 1) E Z 2 with 1# 0 

(1) l im °=o I l) 0, 

where -~ denotes Fourier transform. 

This implies that there exists a sequence nj for which 
A 

l imr"Jl~(k , l )=O,  V ( k , l ) ~ . Z  2, l / O .  

We can assume that lim T s ~  = ~ exists and let lim TSv  = 0. Then ~(k, l) = 0 

when IN0  and ~ ( k , 0 ) =  0(k).  Thus ~ = 0 x m and since O(v)  is minimal, we 

have v x m ~ 6 ( 0  x m ) C 6 ( ~ ) .  Thus it suffices to show that (1) holds. Let 

( k , l ) ~ T  2 with l J 0  be given and let g ( x , y ) = e  2"~k~ " ). Suppose d ~ =  

[(x, y )dm 2 where f E L~(m z). Then 

T"tx (k, l) = g (x + na, y + h,, (x) i f (x ,  y )dxdy 

= (T"g ,  ?-> 
and 

A 
I T'pt (k, l)l 2 = ( (T  × T)"(g  (~ g), f ( ~ f ) .  

By the ergodic theorem 

1 P4--1 

l i m ~  ~ ( T ×  T)"(g (~)g) = E(g  (~g  Io¢) 
n~0 

Since l / O ,  g Q g  is orthogonal to ~ and E(g  ( ~ ,  

last assertion is clear. 

m4-a.e. 

.9) = 0. This proves (1). The 
[]  

THEOREM C. Let a and h satisfy (*). Let i~ ~ ~ ( T  2) and assume that 

v = ¢r(tx ) is absolutely continuous (with respect to m).  Then v × m E O(l~). I f  in 

addition i • is a.p. then i~ = v × m. 

PROOF. Let u be a probability measure on T and let 0 E ~(T2). Define 

u * 0 E ~ ( T  2) by 

fr~ f ( x , y ) d ( u * O ) =  fr: fr  f ( x , y +  z )du ( z )dO(x , y ) .  
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It  is easy to check that  0 ~ u * 0 is a h o m o m o r p h i s m  of (T, ~(T2))  into itself. 

Since O(/x ) contains  a minimal  subset  we can assume tha t / z  itself is a.p. Le t  {u,} 

be  a sequence  of absolute ly  cont inuous  measures  on T which converges  to 60, the 

point  mass  at zero.  Then  for  each n, u, */x is an a.p. and  absolute ly  cont inuous  

measu re  on T 2 with , r (u .  * / z )  = v. Hence ,  by Propos i t ion  3.1, u. */z = v x m. 

But  lim u, */z = 60 * p. = / x  and we conclude that /~  = v x m. [ ]  

We  recall the fol lowing nota t ion  which was in t roduced  in section 1. For  a 

measu re  t~ ~ ~ ( T  2) with ¢r(/~) = v we let v = vc+ vd be  the  decompos i t ion  of v 

into cont inuous  and purely d iscont inuous  parts .  Suppose  vd = ~;a~Sx, (x~ E T, 

a~ > 0 )  and let /x~ be  the restr ict ion of /z to 7r-l(x~). Wri te  / x " =  E p.~ and 

/x = # "  + ~ '. O n e  can easily show tha t /x  "//z "(T 2) is an a.p. e l ement  of (T, ~(T2)),  

[31. 
THEOREM D. Suppose that A(~, h) is countable. Then a measure tz E ~ ( T  2) is 

a.p. iff tz' = vcx m. Each orbit closure in (T, ~(T2))  contains a unique minimal 

set. 

PROOF. Since /z"//z"(T 2) and vex m/(vcX m ) ( T  2) are a.p. the condi t ion is 

sufficient. M o r e o v e r  when proving necessity we can assume that  /z = / x ' .  Thus  

our  a s sumpt ion  is that  7r(/z) = v is cont inuous.  As  in the p roof  of Propos i t ion  3.1 

it suffices to show that  for  every k and l #  0, 

• 1 N - - I  

llm ~ ~=o [ T ' ~  (k, 1)12 = 0. 

Put  g(x, y)  = e 2~"kx+ly), then 

IT"l~(k,l)12= ((Tx T)"g ® g , z  × ~). 

Let  [(x, y, z )  = g ~ g ( x ,  y ,x  +/3, w)  = e 2"q'(y-w}-km. F o r / 3 ~  A, by strict ergodic-  

ity of  (Rz, T3), we have,  since I t  0, for  every  (x, y, z ) E  T3: 

• 1 N-1 [~ 
hm--~ ,~'--o R ~f(x, y, z)  = , fdm 3 = O. 

There fo re ,  outs ide a set B C{(x, y, z, w) : z - x G A}, 

• ] N - - I  

hm~ ~__0 (T× T)"g ® g(x, y,z, w) = O. 

Since A is a ssumed  to be  countable ,  and v is cont inuous ,  we have  (p. x / z ) ( B )  = 

0. By L e b e s g u e ' s  conve rgence  theo rem,  we conclude 

lim ,=o (T× T " ) g @ g d g  ×dl~ =O. 



278 J . P .  C O N Z E  A N D  S. G L A S N E R  Is rae l  J .  M a t h .  

§4. A counter example 

In this section we p roduce  an irrat ional  a and a cont inuous  funct ion h : T---~ T 

such that  (a) a and h satisfy (*), (b) A(a, h)  is uncountable ,  (c) T h e o r e m  D does  

not hold for  (T, T2); i.e. there  exists an a.p. ~ E ~ ( T  2) with u = 7r(/z) con t inuous  

a n d / z J u x m .  

As  in [2] define a sequence  of integers  v~ by v~ = 1 and vk.~ = 2 ~ + vk + 1. Set 

n~ = 2 ~ and a = E~=l n~ ~. Then  

. ., 2-  2 ~ 
I nka - [ m a l l <  2o~+, = 2-"~ 

where  [ • ] denotes  integral part .  Let n-k = - nk and write 

h ( x ) =  ~ (e z''"~'- 1)e 2,~'"~x. 
k ~:0 

T h e  sequence  {n~ }~=1 is lacunary and h (x)  is infinitely di t terent iable .  For  a real 

n u m b e r  t let h '  = t • h. 

4.1. PROPOSmON. There  exists a t, 0 <= t <- 1, for  which a and  h '  satisfy (*). 

PROOF. By R e m a r k  2.3(a) it suffices to show that  there  exist t and/3  such that  

for  every l J  0 the equa t ion  

(1) g ( x  + a ) e  2~''th'(x+~-h'(x~J = g ( x )  

does  not admit  a non-zero  measurab le  solut ion g. By a result  of J. P. Conze  [1], if 

the addit ive equa t ion  

(2) l [ h ( x  + / 3 ) -  h(x) ]  = q,(x + ~ ) -  6 ( x )  

admits  no measurab le  solution 6 then for a lmost  every t equat ion  (1) admits  no 

measu rab le  solution. It is the re fore  enough to show that  (2) admits  no measura -  

ble solution for  some  /3. 

If such a measurab le  solution exists, and belongs  to L 2, we have  f rom (2) the 

following equat ion  for  the Four ier  coetficients: 

l (e  2"%° - 1)/~(nk)= (e z"%" - 1)¢(nk)  

o r  

~ ( n k )  = l (e  2 ' "~" -  1). 
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Now if /3 E T is such that  X[e  2='",~- 112 = oo then we can conclude that  (2) 

admits  no L2 (m)  solution.  Since {nk} is lacunary it follows f rom a result  of M. 

H e r m a n ,  [4], that  (2) admits  no measu rab le  solution as well. T h e  p roof  is 

comple ted .  [ ]  

4.2. PROPOSITION. For every t, A ( a , h ' )  is uncountable. 

PROOF. Let  / 3 E T  satisfy Xk~ ,o [e2""~O- l [2<~  then (2) above  admits  a 

solution (for 1 -- 1): 

@(x) = E ( e2' ' '~-  1) e2""~" 
k # 0  

H e n c e  for  every t, (1) admits  a solution and / 3 E A ( a , h ' ) .  T h e  condi t ion 

Y.~0[ e 2~''~ - 112 < oo is satisfied by an uncountab le  n u m b e r  o f /3  E T and hence  

A(a, h ' )  is uncountable .  [ ]  

4.3. PROPOSITION. Fix a to, 0 <= to <- _ 1 for which c~, h 'o satisfy (*) and let 

( T , T  2) be the corresponding flow. Then there exists an a.p. measure tz @ ~ ( T  2) 

with v = 7r(t.t ) continuous and Iz # v x m. 

PROOF. L e t 1 2 = { w ~ T :  w = Y .  eknk ' ; ek  = 0,1}; then f l  is a closed subset  of 

T which is h o m e o m o r p h i c  to a Can to r  set. Def ine  a function D :12---> R by 

D(to)= E I ez'"k~- 11" 

Clearly D is cont inuous.  We  notice that  

H , ( x )  = ~ (e 2"0,"~ - 1)(e 2""~ - 1) (x E T), 
k # 0  

and there fore  for  every n ~ Z 

I H , ( w ) [ = < 2 ~ [ e 2 " ' " ~ ° - l l = 2 D ( t o ) .  

Let v be an arbi t rary  cont inuous  measure  on 12 with S u p p ( v ) = - Q  and put  

r/ = v x 60. Let  tz be an a.p. measu re  in O( r / )  such that ~(/x ) = v. The re  exists a 

sequence  of integers {hi} such that lim T % / ~ / z  and njc~--~ 0. Clearly 

lim [Supp(T°,r/)]  D Supp(/z ). 

We obse rve  that 
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Supp(T',~/)  = {(ca + nta, h,~(ca)) : ca E fl} 

= {(ca + n, ot, H,,  (ca) + h., (0)): ca E 1~}. 

Now let (x, y ) ~  l im[Supp(T"ir/)] ,  then for some sequence {toj}Cft  

(x, y) = lim T", (cai, 0) 

= lim(coj + nja, H,~ (caj) + h.j (0)). 

Without  loss of generality we can assume that yo = lira h.~ (0) exists and then 
x = lim coj and 

l Y - Yol = Ilim H.j (caJ)I = lim 2D(caj) = 2 D ( x ) .  

Thus  we have 

Supp0z ) C {(ca, y) :1Y - Yol =< 2D(ca)}. 

In particular Sup p (#  ) ~ 1~ x T and/~ # v x m. []  
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