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ABSTRACT

Given a skew product flow (7, T?) on the two torus, we construct a family of
flows on T* parametrized by elements of the circle T. We show that under a
certain condition on (T, T?) almost every flow in this family is strictly ergodic.
This is used to characterize minimal subsets of the flow (7, #(T%)) induced by T
on the space of probability measures on T? Using a result of M. Herman, we
give an example to show that this characterization does not hold for every T.

§1. Introduction and statement of the results
(a) Strict ergodicity

Let T = R/Z be the one dimensional torus, and m the Lebesgue measure on T.
It will be sometimes convenient to identify an element of R with its image in T.

Given a continuous function A : T— T, and an irrational a, we consider the
flow on the two dimensional torus T’ defined by the action of the
homeomorphism

T=T.:(x,y)=>x+ay+h(x)).

For every n € Z, the function f,, f.(x,y) = e*™™, and the constant multiples of
f., are eigenfunctions for T, with ¢*™™ as eigenvalue. Our assumption through-
out this paper is that T has no other eigenfunction in the space L*(m?).

It is easy to see that this assumption is equivalent to the following:

For every A € C for every k € Z\{0}, the functional equation
(*) flx + a)e’™ = af(x)

has no non-zero measurable solution f.
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It is known ([2]) that (*) implies that the Lebesgue measure m? is the unique
T-invariant probability measure on T? and since this measure assigns positive
mass to non-empty open sets, T is strictly ergodic and minimal (i.e., having a
unique invariant probability measure on the space, and such that every point has
a dense orbit).

We shall show that whenever h is essential and satisfies a Lipschitz condition,
then (*) is satisfied for every irrational a (lemma 2.4; see also {2, lemma 2.2]).

We define now two other flows. For each BET, h and a being given as
above, let Ry : T*—>T> and S, : T>— T* be defined by

Rs(x,y,2)=(x+a,y +h(x),z + h(x + B)),
Se(x,y)=(x+a,y+h(x+B)-h(x)).

There exists a flow homomorphism from (R, T?) to (Ss, T?) given by the map
F:T°>T, F(x,y,z)=(x,z — y).
The first result is the following.

THEOREM A. If a and h satisfy (*), the flow (Rg, T?), and hence also (Sg, T°),
are strictly ergodic for m-almost all B €T.

Given a and h, let I' =T'(a, k) be the subset of those 8 € T for which (R, T%)
is strictly ergodic, and let A = T\I'. From Theorem A, we have m(A) = 0, when
(*) is satisfied.

For h(x) = x, we have easily A = Qa + Q (Q = rational numbers). This can be
partially extended:

THEOREM B. Let h :T—T be an essential map. If h is C'**, € >0, we have
for almost all a: A(a, h)=Qa + Q.

It is known that strict ergodicity implies well distribution properties for
sequences generated by the flow.
If we define

h(x)+h(x+a)+---+h(x+(n-1a), n>0
h.(x)=1 0, n=0
—h(n—a)-h(x—2a)— - ~h(x—-na), n<0

and H,(x)= h,(x)~ h.(0), n € Z, we have:
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T (x,y)=(x + na,y + h.(x)), and S3(0,0)= (na, H.(B)).

Thus, Theorem A implies as a

CoROLLARY. If (*) is satisfied, for m-almost all B, the sequence {H,(B),n €
Z} is well distributed.

From Theorem B, it follows:

If b is a C"** essential map, for m-almost all a, the sequence {H.(B),n € Z} is
well distributed, when BZ Qa + Q.

(b) Almost periodicity of measures

We are also interested here in some simple topological properties of the flow
(T, (T?) induced by T on the space P(T’) of probability measures on T*
equipped with the weak * topology. (We still denote by T the homeomorphism
induced on P(T?) by T = T.x.)

A measure u € P(T?) is called almost periodic (a.p.) (for (T, ?(T?), if its
T-orbit has a closure in (T?), denoted by O(.), which is a minimal set (i.e. the
orbit of every u, € O(n) is dense in o))

For any measure v € ?(T), we have easily that the orbit closure of v under
the action of the rotation x — x + @ on 2(T) is a minimal set. This implies that,
for every v € ?(T), the product measure » X m is an a.p. point of the flow
(T, 2(T%).

Let 7 : T>— T be the projection 7 (x, y) = x, and also 7 : ?(T*)— P(T) the
induced map on the space of probability measures. For p € ?(T?) with
w(un)= v, we write v = v. + v, where v, = 2 a;é,, is the purely discontinuous
part of v and w. is its continuous part (i.e. v. has no atoms). Let u; be the
restriction of p to 77'(x;) and write u =p'+pu’

4

where p”= 2 ;. For an
arbitrary irrational a and the function h(x)= x, the following characterization
of a.p. measure of (T, P(T?)) was given in [3].

A measure u € P(T?) is a.p. iff u'= v.x m. Each orbit closure in P(T)
contains a unique minimal set. We prove here the following theorems.

THeoReM C. Let « and h satisfy (*). Let p € P(T°) with v=m(n) an
absolutely continuous measure (with respect to m). Then v Xm € O(w). If in
addition u is a.p. then 4 = v X m.
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THEOREM D. Suppose that A(a, h) is countable. Then a measure u € P(T?) is
a.p. iff u' = v. X m. Each orbit closure in P (T°) contains a unique minimal set.

Is A(a, h) always countable? The answer is no; we produce an irrational a and
a continuous function h for which the assumption (*) holds and yet A(q, h)
(which is of measure zero) is uncountable. We also show that for the correspond-
ing flow (T, T?), there exists an a.p. u € P(T?) for which 7 (1) = v is continuous
and yet p# v X m.

Analogous results about the topological behaviour of {H.(x)} and the
character of almost periodic closed subsets of (T, T?) were obtained in [3].

§2. The set A(a, h). Proofs of Theorems A and B

2.1. The following proposition will be used in Theorems A, C, D. It is
classical and we omit the proof.
Consider the product flow (T X T, T?> X T?) given by

(TxT)((x,y),(z,w)=((x+a,y +h(x)),(z +a w+ h(z))).

Let $ denote the subspace of L,(m*) of T X T-invariant functions.

ProprosiTiON.  If a and h satisfy (), S is spanned by the functions of the form
(x,y,z,w)—> &> k €Z.

2.2. Prooror THEOREM A. Since (R, T?) is a group extension of the strictly
ergodic flow (T, T?), it is enough to show that (R, T, m?) is ergodic [2, lemma
2.1].

Let (I, p, k)€ Z’. Let f be defined on T* by

2mi (Ix +py +kw)

f(x,y,z,w)=¢e
By the ergodic theorem, we have

(TXTYf—=E(]|¥) m*a.e.

1 N-1
N
Here E(-|.$) is the projection of L,(m*) onto #. Now if (I, p, k) # (0,0,0) then
by Proposition 2.1 f is orthogonal to ¥ and E(f|.$)=0. Thus

limjb—’:g exp{2mi[l(x + na )+ p(y + ha(x)+ k(w + ha(2))]} =0
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for m* almost all x, y, w and z. Writing 8 = z — x we conclude that for almost all
B and g(x,y,w)=g(x,y,x + B, w)

N-1
Iim—;—rz R;g(x,y,w)=0=fgdm3 m>-a.e.
n=0

Since the functions g(x, y, w) which correspond to (I, p, k) # 0 together with the
constant functions span L,(m?), we conclude that (Rg, T°) is ergodic. The strict
ergodicity of (Sg, T?) follows since the latter is a factor of the former flow. O

2.3. REMARKS. (a) Suppose that o and k do not satisfy (). Then, for some
k€Z-{0} and A €C, |A| =1, there exists a non-zero measurable function f
such that

flx + a)e®™ ™ = Af(x).
Define gz(x) = f(x)/f(x + B). We have

gB(x) = e2m‘k[h(x)—h(x+B)]gB(x + a)’

for every B € T. Therefore (Ss T?), and hence also (R, T°), are not strictly
ergodic (cf. [2, lemma 2.1}), and we have A(a, h)=T.

This shows that we have (*) iff m (A) = 0, and that A is either all of T or a set of
measure zero.

These results can be proved directly, using the fact that A is a measurable
subgroup of T.

(b) The results in [3] were obtained under the assumption that the flow (T, T?)
is not equicontinuous rather than the a priori stronger condition that the only
continuous eigenfunctions of (T, T?) are the functions e*™* (k € Z), which is the
topological analogue for our condition (*). However, lemma 2.2 of [3] shows that
the weaker condition implies the stronger one.

2.4. Given a continuous function h : T— T, there exists a continuous “‘lift”
h:[0,1]—> R (i.e. £(t) = h(t) (mod 1)). The integer d = /(1) — /1 (0) depends only
on A and is called the index of h. Clearly h is essential (i.e. non-homotopic to a
constant) iff d#0. Let §:[0,1]— R be defined by g(x)=h(x)—dx. Then
§(1)— £(0)=0 and g : T— R is continuous. Our next goal is to prove Theorem
B. The proof of the following lemma is essentially that of lemma 2.2 of [2].

LemMA. Leth : T— T be an essential map of index d # 0, and suppose that for
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all x, x' €T, |h(x)— h(x')| <M|x — x'|. Then condition (*) is satisfied for every
irrational « € T.

2.5. The next lemma is due to M. Herman.

LemMma. Letg :T— R beof class C'**. Let B = [xr¢(x)dx. Then for almost all
a €T the functional equation f(x + a) = e*™*®f(x) has a non-zero measurable
solution f iff BEZa + Z.

Proor. Consider §(x) = ¢(x)— B. Using Fourier series, a formal solution u
of the (additive) functional equation

u(x +a)=g(x)+u(x)

can be defined. For every ¢/, 0 < ¢’ <e¢, for almost all «, the solution u can be
shown to be ¢’-differentiable.
Taking the exponential, we get

Tmiu(x+a) - 2P Zfriqo(x)eZ‘rriu(x)

4 4

Therefore, the given functional equation has a solution iff e™*™ is an

eigenvalue of the rotation by a, i.e. B € Za + Z.

2.6. Proor orF THEOREM B. Using Fourier coefficients, it can be shown that
B € A(h, «) iff, for some (k, I) € Z* —{(0, 0)}, there exists a non-zero measurable
solution f of the equation

f(x + a)e2wi[kh(x+[3)+lh(x)] — f(x)

For k # — [, the function x — kh{(x + B)+ Ik (x) is an essential function, which
satisfies a Lipschitz condition. By Lemma 2.4, there exists no non-zero measura-
ble solution of the above equation. Thus k = — [, and we have, with the notation
used in 2.4,

flx + a@)e™™ ) = f(x),

where o (x) = k[g(x + B)— g(x)+ dB]. Applying Lemma 2.5 to ¢, for a.a. @, we
get kdBEZa+Z,ie. BEQa+Q.

§3. Almost periodic measures

3.1. PRroPOSITION. Suppose « and h satisfy (*), and let p € P(T?) be
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absolutely continuous (with respect to m?). Let w(u) = v; then v X m € O(n). If
in addition p is a.p. then yp = v X m.

Proor. We show that for every (k, 1) € Z* with [#0
N-1 N\
) lim— S | T (k, ) =0,
N n=0
where * denotes Fourier transform.
This implies that there exists a sequence n; for which
A\
lim T"u(k,1)=0, V(k,)EZ?, I#0.

We can assume that lim 7"y = n exists and let lim 7% = 6. Then 7(k,1)=0
when !# 0 and #(k,0)= 6(k). Thus = § X m and since O(v) is minimal, we
have v xm € O(8 X m)CO(w). Thus it suffices to show that (1) holds. Let
(k,)ET®> with [#0 be given and let g(x,y)=e*"**". Suppose du =
f(x,y)dm? where f € L,(m?). Then

T )= [ [ g+ oy + ha(oNfx )y
=(T"g f)
and
N\ —
T (6 DE = (T X TY"(g ®2), T Q).
By the ergodic theorem
lim s 3 (Tx Ty (¢ ®§) = EE®8|9)  mae.

Since [#0, g ® & is orthogonal to $ and E(g ® g | #) = 0. This proves (1). The
last assertion is clear. a

TueoreM C. Let a and h satisfy (*). Let u € P(T?) and assume that
v = m(w) is absolutely continuous (with respect tom). Then v X m € O(u). If in
addition u is a.p. then p = v X m.

Proor. Let u be a probability measure on T and let 8 € P(T°). Define
u*6 € P(T? by

[ f@ndwroy=| [ sy +2)du)docx, )
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It is easy to check that § = u *8 is a homomorphism of (T, ?(T?)) into itself.
Since O(u ) contains a minimal subset we can assume that wu itself is a.p. Let {u,}
be a sequence of absolutely continuous measures on T which converges to &, the
point mass at zero. Then for each n, u, * u is an a.p. and absolutely continuous
measure on T? with 7(u, * ) = v. Hence, by Proposition 3.1, u, *u = v X m.
Butlimu, * u = 8, *u = u and we conclude that p = v X m. O

We recall the following notation which was introduced in section 1. For a
measure p € P(T?) with 7(u) = v we let v = v. + vq be the decomposition of v
into continuous and purely discontinuous parts. Suppose vs=Zaé, (x; €T,
a;,>0) and let u; be the restriction of p to = '(x;). Write u”" =2, and
g ="+ p'. One can easily show that u”/u"(T?) is an a.p. element of (T, P(T?)),
(31

THEOREM D. Suppose that A(a, h) is countable. Then a measure p € P(T?) is

a.p. iff #' = vex m. Each orbit closure in (T, P(T?)) contains a unique minimal
set.

Proor. Since u"/u"(T?) and v.X m/(v.x m)(T?) are a.p. the condition is
sufficient. Moreover when proving necessity we can assume that u = p'. Thus
our assumption is that (1 ) = v is continuous. As in the proof of Proposition 3.1
it suffices to show that for every k and [ #0,

N-1
lim~ > | T (k, 1)[ = 0.
N n=0
Put g(x,y)z eZm‘(kay), then

| T (k, D = (T X T)'g ® g 1 X i2)-

Let f(x,y,2)=g Qg (x,y,x + B, w)= >0 I For B& A, by strict ergodic-
ity of (Rs, T%), we have, since {# 0, for every (x,y,2)E T

N-—1
1im12 R;;f(x,y,z)=f fdm*=0.
N n=0 T3
Therefore, outside a set B C{(x,y,z,w):z —x €A},
1 N-1
limy; 2 (T X T)'g ®E(x.y,2,w)=0.
n=0

Since A is assumed to be countable, and v is continuous, we have (u X p)(B) =
0. By Lebesgue’s convergence theorem, we conclude

N-1
lim% > f (TXT)g @gdu X du =0.
n=0
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§4. A counter example

In this section we produce an irrational a and a continuous function h : T—T
such that (a) a and h satisfy (*), (b) A(e, h) is uncountable, (c) Theorem D does
not hold for (T, T?); i.e. there exists an a.p. u € P?(T?) with v = 7 (u ) continuous
and p # v X m,

As in [2] define a sequence of integers v, by v, =1 and v, = 2% + v + 1. Set
n. =2% and @ = 5, n;'. Then

'nka —_ [nka],<%=2_"k

Yk+1

where [ -] denotes integral part. Let n_, = — n, and write

h(x) — 2 (e2-m‘nka_ 1)eZm'nkx'
k#0

The sequence {n.}i_; is lacunary and h(x) is infinitely differentiable. For a real
number ¢t let h' =t -h.

4.1. ProrosiTion. Thereexistsat, 0=t =1, for which a and h' satisfy (*).

Proor. By Remark 2.3(a) it suffices to show that there exist f and 8 such that
for every [# 0 the equation

M B3 + et ) = g (x)

does not admit a non-zero measurable solution g. By a result of J. P. Conze [1}, if
the additive equation

@) I[h(x +B) =~ h(x)]=d(x + )= ¥(x)

admits no measurable solution ¢ then for almost every t equation (1) admits no
measurable solution. It is therefore enough to show that (2) admits no measura-
ble solution for some .

If such a measurable solution exists, and belongs to L?, we have from (2) the
following equation for the Fourier coefficients:

1™ — 1) () = (2™ = 1) (n)
or

P )= 1(e*™* - 1).
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Now if B8 €T is such that 3|e*> " —1[°= o then we can conclude that (2)
admits no L*(m) solution. Since {n.} is lacunary it follows from a result of M.
Herman, [4], that (2) admits no measurable solution as well. The proof is
completed. O

4.2. ProposiTiON. For every t, A(a, h') is uncountable.

Proor. Let BET satisfy Zi.le’™® —1°<» then (2) above admits a
solution (for I =1):

(‘L‘(x) — 2 (eZ-rrinkB - 1)e2m'nkx.
k #0

Hence for every t, (1) admits a solution and B € A(e, h'). The condition
Sixo]€”™™# — 1)? < o is satisfied by an uncountable number of 8 € T and hence
A(a, h')is uncountable. O

4.3. ProposITION. Fix a to, 0=t,=1 for which «, h" satisfy (*) and let
(T, T?) be the corresponding flow. Then there exists an a.p. measure u € P(T?)
with v = w(u) continuous and p # v X m.

Proor. Let Q={w €T: w=2Zgn:'; & =0,1}; then Q is a closed subset of
T which is homeomorphic to a Cantor set. Define a function D : 3 —R by

D(w)= 2, [e?™—1].
k #0
Clearly D is continuous. We notice that
H(x)=3 (@™ -~ ~1)  (xET),
k#0
and therefore for every n € Z

|H (w)|=2D |e*™—1]|=2D(w).

Let » be an arbitrary continuous measure on  with Supp(»)=Q and put
=y X 8,. Let u be an a.p. measure in O(n) such that () = v. There exists a
sequence of integers {n;} such that lim T"n — x and ma — 0. Clearly

lim [Supp(T"n)] D Supp(x).

We observe that
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Supp(T"n) = {(w + na, h, (w)): w € O}
={(o + no, H, (0) + h, (0)): w € Q}.
Now let (x,y) € lim[Supp(T"m)], then for some sequence {w;} CQ
(x,y)=lim T" (e, 0)
= lim(w; + ma, H, (w;) + h,, (0)).

Without loss of generality we can assume that y, = lim h,, (0) exists and then
x = limw; and

[y = Yol = llimH,.,. (0))|=1im2D(w;) = 2D (x).
Thus we have

Supp(u) C{(w,y):|y = yo| =2D(w)}.

In particular Supp(u) # Q xTand u# v X m. 0
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